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Abstract
A recently developed self-consistent ab initio lattice dynamical method has been applied to the
high temperature body centered cubic (bcc) phase of La and Th, which are dynamically
unstable at low temperatures. The bcc phase of these metals is found to be stabilized by
phonon–phonon interactions. The calculated high temperature phonon frequencies for La are
found to be in good agreement with the corresponding experimental data.

1. Introduction

The unique physical and chemical properties of the actinides
and lanthanides have attracted interest for decades. Several
reviews have been written on the subject (see, e.g. [1–3]),
identifying different properties which make these two series
of the periodic table unique. The uniqueness stems from the
progressive filling of the f shell as one traverses each series. In
general one observes that the 4f-electrons in the lanthanides
behave in a localized way, much in the same way they do
in the atomic configurations. For the actinides (where the 5f
shell becomes filled) a more complex behavior is observed:
for the latter part of the series (from Am and onward) the 5f
states are localized, whereas for the earlier part of the series
(from Th to Np) the 5f states are itinerant and form energy
bands. This becomes evident when, e.g., considering the
cohesive energy and equilibrium volumes [4] as well as the
structural properties [5, 6]. The element Pu sits right on the
border between these parts of the actinide series, demonstrating
transition from itinerant f-electrons in α-phase to the localized
one in δ-phase [7, 8], and hence the electronic structure and
many other properties of this material are extremely complex.

An experimental fact which is common for the lanthanides
and actinides is that these elements do not usually crystallize
in the body centered cubic (bcc) structure at low enough

temperatures, but they melt frequently out of this structure.
In this paper we have chosen to investigate this complex
behavior, by studies of representative materials of the two
series, i.e. La and Th. At low temperatures La and
Th have the double hexagonal closed packed (dhcp) and
face centered cubic (fcc) structure, respectively. The low
temperature structural properties are perfectly understood from
first principles theory [9, 10], showing that it is the filling of the
d-band that is responsible for the structure of La [9], whereas
Th is an intermediate system which has been shown to have
its crystal structure governed by a balance of the occupation
of the 5f and the 6d states [11]. Hence the two elements
chosen in this study represent different structural and electronic
properties in the ground state phases. Despite these marked
differences these materials exhibit a typical behavior of the
4f and 5f series, namely that they melt out of the bcc crystal
structure. It is the purpose of this report to show that the
interaction between different phonon modes is responsible for
the dynamical stabilization of the high temperature phase of
these two series.

2. Details of the calculations

The lattice dynamical calculations of La and Th
at elevated temperatures were performed using the recently
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developed self-consistent ab initio lattice dynamical (SCAILD)
method [12]. In the SCAILD method one displaces the atoms
of a supercell along several phonon modes simultaneously,
in order to include the effects of phonon–phonon interactions
upon the phonon frequencies at elevated temperatures. The
simultaneous presence of several frozen phonons in the su-
percell introduces geometric disorder, i.e., entropy, which in
turn renormalizes the phonon frequencies. In the SCAILD ap-
proach, the atomic displacements UR of the atoms located at
equilibrium Bravais lattice sites R, are taken as superpositions
of all the phonon modes s, with wavevectors q found to be
commensurate with the cell, i.e,

UR = 1√
N

∑

q,s

AqsεqseiqR. (1)

Here εqs are the eigenvectors of the dynamical matrix

D(q) = 1

M

∑

R

�(R)e−iqR, (2)

where �(R) are the force constant matrices and

Aqs = ±
√ 〈QqsQ−qs〉

M
= ±

√
h̄

Mωqs

[
1

2
+ n

(
h̄ωqs

kBT

)]
, (3)

where n(x) = 1/(ex − 1) is the Planck function, M is the
mass of atoms, and Qqs are the canonical phonon operators
appearing together with the canonical phonon momentum,
Pqs , in the harmonic Hamiltonian, Hh = ∑

q,s
1
2 (PqsP−qs +

ω2
qsQqsQ−qs).

The SCAILD method alternates between setting up atomic
displacements based on phonon frequencies and evaluating the
phonon frequencies from ab initio calculated forces acting on
the displaced atoms. For the first iterative step, the forces
stem from a direct force method calculation, see, e.g., [13, 14].
The phonon frequencies and eigenvectors corresponding to
commensurate wavevectors q, serve to calculate a set of atomic
displacements UR through equation (1) and (3). A first
principles calculation provides the Hellman–Feynman forces
acting on the displaced atoms, and a new set of phonon
frequencies are obtained from the Fourier transform Fq of the
forces,

ω̄qs =
[
εqs · Fq

Aqs M

]1/2

. (4)

To clarify how the interactions between different phonon
modes affect the renormalization of the phonons, we here
also give the alternative expression for the new set of
phonon frequencies ω̄qs in terms of anharmonic potential
coefficients [16]

ω̄2
qs = ω2

qs

(
1 +

√
M

2

Aqs

ω2
qs

×
∑

q1,q2

∑

s1,s2

R(q, q1, q2, s, s1, s2)
Aq1s1Aq2s2

A2
qs

+ · · ·
)

. (5)

Here

R(q, q1, q2, s, s1, s2) = 1

(M N)3/2

∑

R,R1,R2

∑

α,β,γ

�αβγ (R, R1, R2)

× εqsαεq1s1βεq2s2γ ei(Rq+R1q1+R2q2), (6)

where �αβγ (R, R1, R2) are the third order coefficients
appearing in the anharmonic part of the lattice dynamical
Hamiltonian, see for instance [15, 16]. These coefficients
describe, in terms of anharmonic changes to the nuclear
potential energy, the underlying electronic structure response
to the atomic displacements. Even though only third order
anharmonic terms are explicitly written out in equation (5),
it is now apparent that the simultaneous excitations of
several commensurate phonons in the SCAILD calculation,
renormalizes the phonon frequencies through anharmonic
terms such as R(q, q1, q2, s, s1, s2). Thus these anharmonic
terms can be viewed as the mediators of the phonon–phonon
interaction.

The symmetry of the frequencies obtained through
equation (4) is restored through

�2
qs = 1

mq

∑

S∈S(q)

ω̄2
S−1qs, (7)

where S(q) is the symmetry group of the wavevector q and mq

the number of elements of the group. From these symmetry
restored frequencies a new set of frequencies

ω2
qs(NI ) = 1

NI

NI∑

i=1

�2
qs(i), (8)

are calculated. Here �qs(i), i = 1, . . . , NI are the symmetry
restored frequencies from the NI previous iterations. The
frequencies obtained through equation (8) are then used to
calculate a new set of atomic displacements UR, through
equations (1) and (3), which in turn serve to calculate a new set
of forces. The iterative loop is terminated when the frequencies
obtained through equation (8) have converged. For a more
detailed discussion of the SCAILD method we refer the reader
to the work presented in [16, 17].

From the converged commensurate phonon frequencies
and their corresponding eigenvectors, the force constant
matrices �(R) of La and Th were calculated by inverse Fourier
transformation. The force constant matrices were then used to
calculate the dynamical matrices D(q) on a mesh of 22 776
q-points in the irreducible Brillouin zone (100 × 100 × 100
Monkhorst–Pack mesh). By diagonalization of the dynamical
matrices on this mesh and by applying a Gaussian smearing
of 0.05 THz to each phonon frequency, the phonon density of
states (DOS) was obtained for bcc-La and bcc-Th.

Regarding the details of the force calculation we used
the VASP package [18], within the generalized gradient
approximation (GGA). The PAW potentials used required
energy cutoffs of 151 eV for La and 200 eV for Th.
Monkhorst–Pack grids with a 6 × 6 × 6 mesh were used
together with 0.2 eV Methfessel–Paxton smearing in all the
calculations. The supercells used were all 64 atom cells,
obtained by increasing the bcc primitive cell four times along
the three primitive lattice vectors.

In order to get a quantitative measure of the quality of
the PAW potentials used, the equilibrium lattice constants and
bulk moduli were calculated and compared to their respective
experimental values. Table 1 shows the results of these
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Figure 1. The right-hand panel, finite temperature SCAILD calculation of La and Th at 1163 K and 1636 K respectively. The left-hand panel,
standard direct force method calculation [13] of La and Th. Here the dashed curves in the left-hand panel indicate imaginary frequencies. The
filled circles and error bars are the experimental data for La of [19] measured at 1163 K.

Table 1. The zero temperature theoretical equilibrium volumes V0

(Å
3
), bulk moduli B (GPa) and pressure derivatives of the bulk

moduli B ′ = ∂ B/∂ P of the metals La and Th, here presented
together with experimental room temperature data. The structures
corresponding to the experimental data are hcp and fcc for La and
Th, respectively.

V (theor)
0 B(theor) B ′(theor) V (exp)

0 B(exp)

La 37.3 26 2.16 37.7a 27.9a

Th 32.1 58 2.53 32.9b 57.7c

a Reference [21].
b Reference [22].
c Reference [23].

calculations together with experimental data. From these
results no immediate doubt can be raised concerning the
electronic structure part of the La and Th calculations, since
calculated equilibrium properties are in a good agreement with
experimental observations.

3. Results

Figure 1 shows the calculated phonon dispersions for the bcc
phases of La and Th at temperatures 1163 K and 1636 K,
respectively. In the case of La, the corresponding experimental
data of Stassis et al [19] is displayed. Furthermore, we also
observe that the present zero temperature calculations of La,
reveal the same dynamical instabilities as in the previous work
of Persson et al [20]. The finite temperature calculations

predict the stability of the bcc phase of both La and Th by
promoting the frequencies of the phonons along the 
 to N
and 
 to H symmetry lines and around the P symmetry point,
from imaginary to real. The finite temperature calculations of
the bcc-La phonons result in an overall quantitative agreement
with experimental values. Smaller deviations are observed
around the H, P and N point of the Brillouin zone, most
likely due to finite size effects of the supercell used in the
calculations. The frequencies at commensurate wavevectors
are affected by the limited cell size due to the dependence on
the number of interacting phonons (the calculation only takes
into account interactions between phonons with commensurate
wavevectors). This differs from the direct force method, where
the cell size affects the interpolation of phonon frequencies
between commensurate wavevectors, but not the frequencies
at commensurate wavevectors. For an example of size effects
in SCAILD calculations see [17]. From equation (3) and (5) it
can be seen that, at high enough temperatures, the relative shift
of the squared frequency is to first order inversely proportional
to the harmonic frequency: δω2

qs/ω
2
qs ∼ ω−1

qs . Hence the
transverse phonon modes, with their generally smaller phonon
frequencies (compared to the longitudinal modes) are more
strongly affected by the phonon–phonon interaction.

Figure 2 shows the calculated DOS of bcc-La and bcc-
Th at 1163 K and 1636 K, respectively, together with the
experimental 1163 K data for La of Güthoff et al [19]. Here
the most obvious discrepancy is that the experimental spectrum
is ∼0.5 THz broader than the theoretical one. Also, compared
with the theoretical DOS of La the corresponding experimental
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Figure 2. The phonon density of states for bcc-La and bcc-Th. The
black curves are the 1163 K and 1636 K SCAILD calculations for La
and Th, respectively. The dashed red line is the experimental bcc-La
data calculated from the 1163 K measurements of Güthoff et al [19].
Both the experimental and the theoretical density of states g(ω) have
been normalized so that

∫ ∞
0 g(ω) dω = 1.

(This figure is in colour only in the electronic version)

DOS has considerable more weight located at ∼0.8 THz.
This lack of agreement between theory and experiment is
however not surprising, since the electronic part of the bcc-
La calculation has been performed without spin–orbit coupling
(only scalar relativistic).

Application of the SCAILD method in the calculation to
the lattice dynamical properties of the rare earths La and Th,
shows that the bcc structure of these elements is dynamically
stabilized by phonon–phonon interactions.
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